

UC SANTA BARBARA

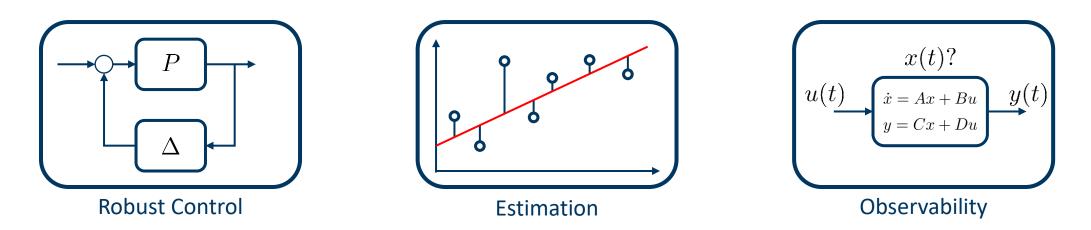
Avoiding Unintended Consequences:

How Incentives Aid Information Provisioning in Bayesian Congestion Games

Bryce L. Ferguson¹, Philip N. Brown², & Jason R. Marden¹

¹University of California, Santa Barbara Department of Electrical and Computer Engineering ²University of Colorado, Colorado Springs Department of Computer Science

Information in Control



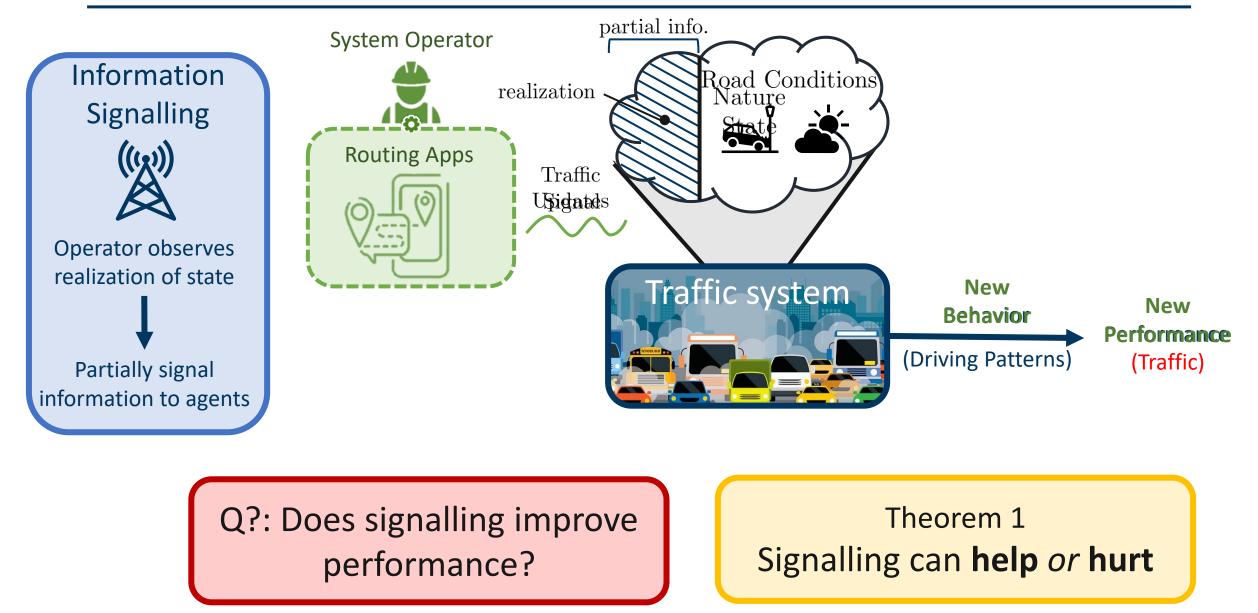
Classic Problem:

Uninformed designer must combat uncertainty in control

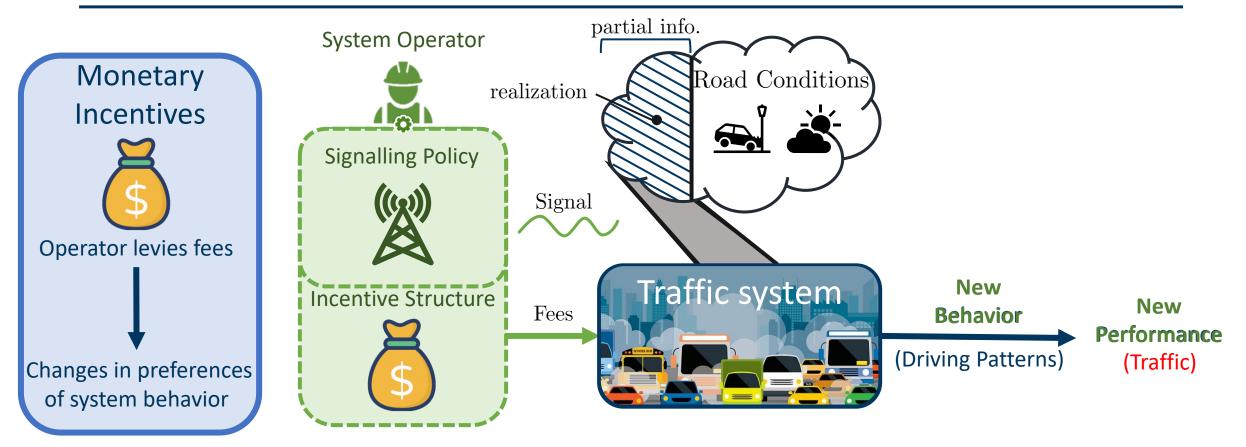
Emerging Problem:

Informed designer can utilize uncertainty as control

Information as Control



Information & Incentives



Q?: How do *signals* and *incentives* work together?

Theorem 2 With incentives Signalling can **only** help

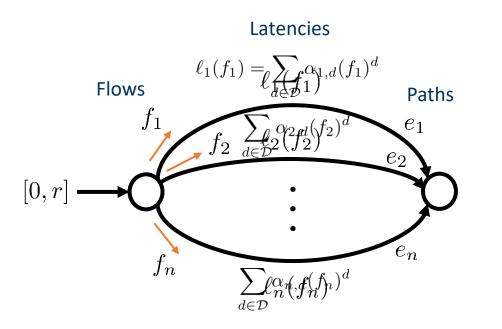
Today's focus

- When should information be revealed?
- How much can we *improve* performance?
- How do *incentives* and signals interact?
- How do we *design* signalling policies?
- Can *deceit* help us?

In Progress

Bayesian Congestion Games

Full information



Latency function:

Possible degrees

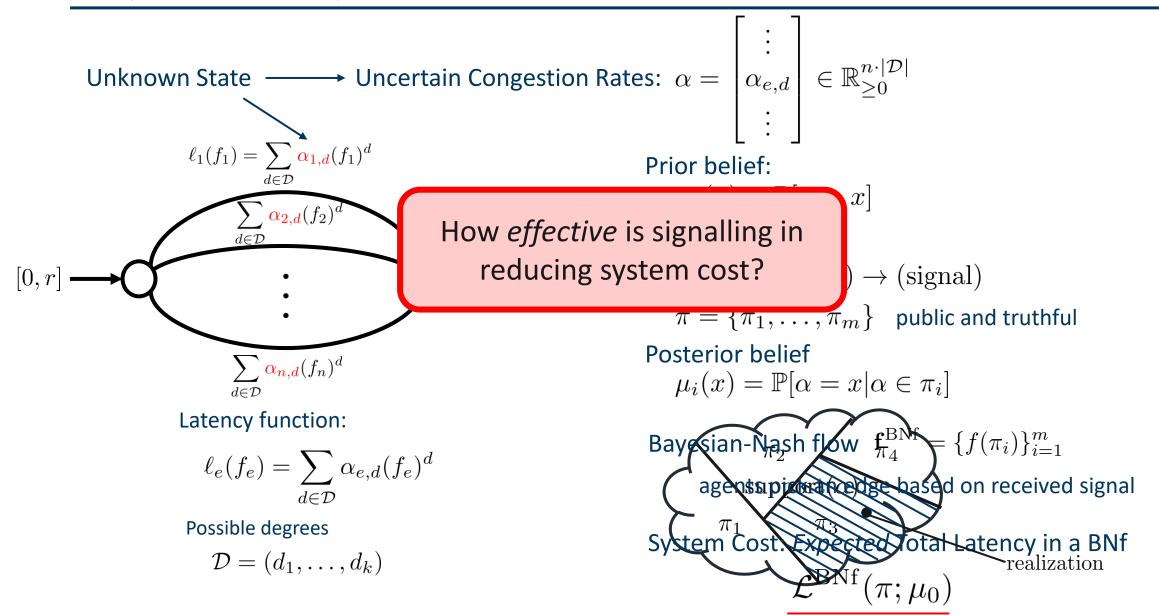
 $\ell_{e}(f_{e}) = \sum_{d \in \mathcal{D}} \alpha_{e,d}(f_{e})^{d} \qquad \mathcal{D} = (d_{1}, \dots, d_{k})$ $\underset{\mathsf{BPR}}{\mathsf{Affine}} \qquad \mathcal{D} = \{0, 1\}$ $\mathcal{D} = \{0, 4\}$ $\mathcal{D} = \{0, 1, \dots, D\}$ $\ell_{e}(f_{e}^{\mathsf{Nf}}) \leq \ell_{e'}(f_{e'}^{\mathsf{Nf}}), \ \forall e \in E \text{ s.t. } f_{e}^{\mathsf{Nf}} > 0, \ e' \in E$

Each user takes minimal cost path

System Cost: Total Latency

$$\mathcal{L}(f) = \sum_{e \in E} f_e \cdot \ell_e(f_e)$$

Bayesian Congestion Games



Performance metric: Benefit of Signalling

 $\mathbf{B}(\pi;\mu_0) = \mathcal{L}^{\mathrm{BNf}}(\emptyset;\mu_0) - \mathcal{L}^{\mathrm{BNf}}(\pi;\mu_0) \qquad \text{Reduction in system cost from signalling}$ without signalling with signalling

Theorem 1: For any set of polynomial degrees \mathcal{D} , prior μ_0 , and signalling policy π :

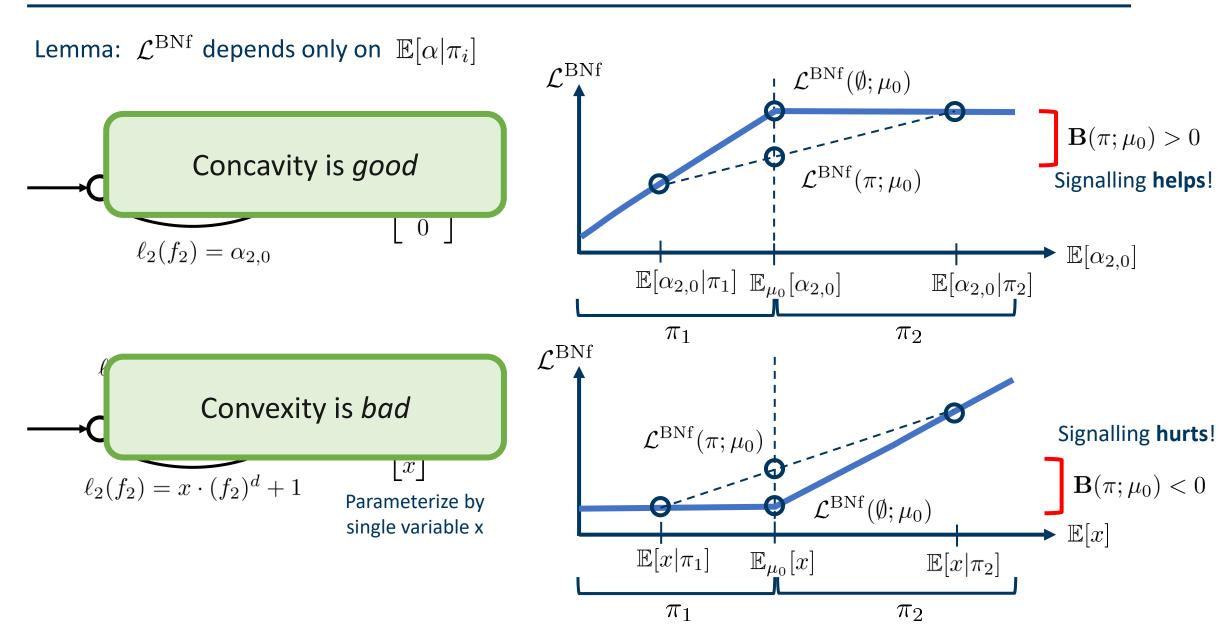
$$-\sqrt{|\mathcal{D}|} \cdot \|\mathbb{E}[\alpha] - \underline{\alpha}\|_2 \le \mathbf{B}(\pi; \mu_0) \le \sqrt{|\mathcal{D}|} \cdot \|\mathbb{E}[\alpha] - \underline{\alpha}\|_2,$$

where $\mathbb{E}[\alpha] = \int_{x \in A} x \cdot \mu_0(x) dx$, and $\underline{\alpha} \in \mathbb{R}_{\geq 0}^{|E| \cdot |\mathcal{D}|}$ such that $\underline{\alpha}_{e,d} = \inf\{ \operatorname{supp}(\alpha_{e,d}) \}$ for each $e \in E, d \in \mathcal{D}$.

Observations:

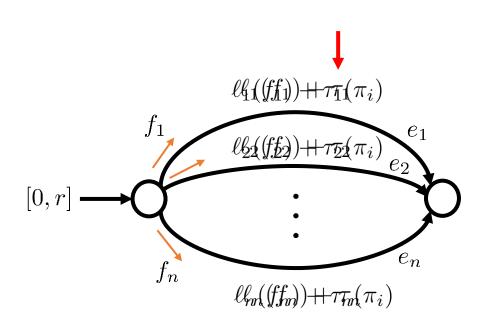
- 1. Signals can help or hurt performance
- 2. Bounds depend on
 - I. Complexity of model
 - II. Spread of α

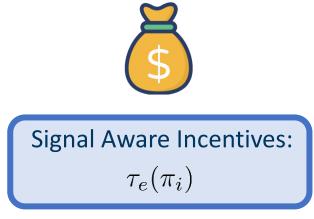
Insights and Reasoning



Monetary Incentives

Add a monetary incentive au_e to each edge to alter costs





Proposition: For a signalling policy π , the optimal signal aware incentive is

$$\tau_e^{\star}(\pi_i) = \sum_{d \in \mathcal{D}} d \cdot \mathbb{E}[\alpha_{e,d} | \pi_i] z_e^d$$

where $z \in \arg\min_{f} \mathcal{L}(f; \mathbb{E}[\alpha | \pi_i])$.

Concurrent Signals and Incentives

With incentives, what is the benefit of signalling? $\mathbf{B}(\pi; \mu_0, \tau^*)$

Theorem 2: For any set of polynomial degrees \mathcal{D} , prior μ_0 , and signalling policy π : $0 \leq \mathbf{B}(\pi; \mu_0, \tau^*) \leq \sqrt{|\mathcal{D}|} \cdot ||\mathbb{E}[\alpha] - \alpha||_2,$ where $\mathbb{E}[\alpha] = \int_{x \in A} x \cdot \mu_0(x) dx$, and $\alpha \in \mathbb{R}_{\geq 0}^{|E| \cdot |\mathcal{D}|}$ such that $\alpha_{e,d} = \inf\{ \operatorname{supp}(\alpha_{e,d}) \}$ for each $e \in E, d \in \mathcal{D}$.

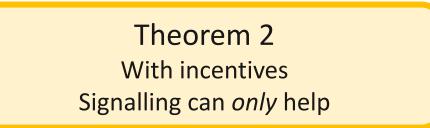
Observations:

- 1. With incentives, signalling can only help
- 2. Signalling still has the same capabilities to improve performance

Numerical Example

Benefit of Signalling

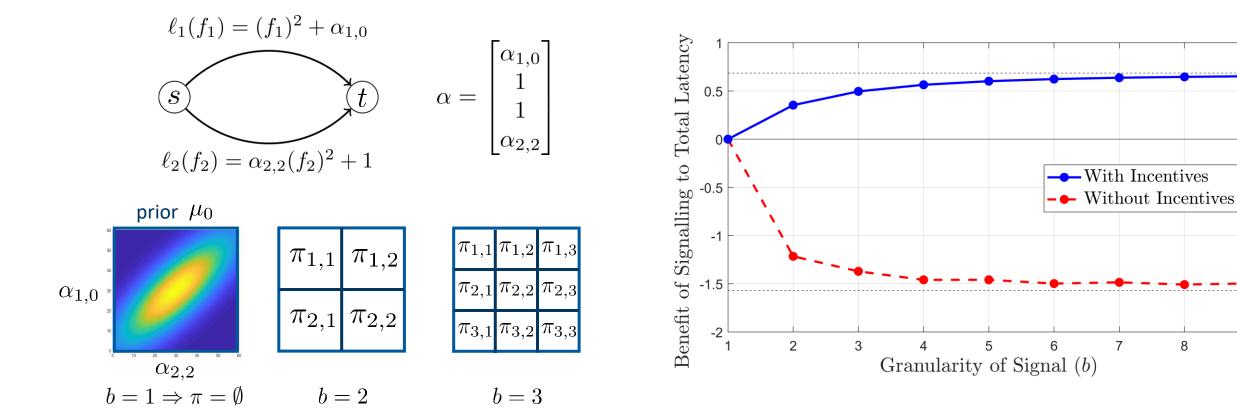
Theorem 1 Without incentives Signalling can help or hurt



7

8

9



• When should information be revealed?

When you have *concavity* When you use *incentives*

- How much can we *improve* performance?
- How do *incentives* and signals interact?
- How do we *design* signalling policies?
- Can *deceit* help us?

Bounds on benefit Similar improvement when using incentives

Incentives essentially *robustify* signals

Hard because decision variable is any partition Limit to certain types of signals

Conjecture: Not with public signals

• Multiple information senders

• Non-Bayesian Inference

UC SANTA BARBARA

Avoiding Unintended Consequences:

How Incentives Aid Information Provisioning in Bayesian-Congestion Games

Bryce L. Ferguson¹, Philip N. Brown², & Jason R. Marden¹

¹University of California, Santa Barbara Department of Electrical and Computer Engineering ²University of Colorado, Colorado Springs Department of Computer Science